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Abstract. In this paper we construct an efficient adaptive Mahalanobis k-means
algorithm. In addition, we propose a new efficient algorithm to search for a globally
optimal partition obtained by using the adoptive Mahalanobis distance-like function. The
algorithm is a generalization of the previously proposed incremental algorithm [36]. It
successively finds optimal partitions with k = 2, 3, . . . clusters. Therefore, it can also be
used for the estimation of the most appropriate number of clusters in a partition by using
various validity indexes. The algorithm has been applied to the seismic catalogues of
Croatia and the Iberian Peninsula. Both regions are characterized by a moderate seismic
activity. One of the main advantages of the algorithm is its ability to discover not only
circular but also elliptical shapes, whose geometry fits the faults better. Three seismogenic
zonings are proposed for Croatia and two for the Iberian Peninsula and adjacent areas,
according to the clusters discovered by the algorithm.
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1 Introduction
Unsupervised learning consists in discovering hidden structures in unlabeled data. The
goal of this technique is to find groups of data exhibiting similar behavior. Unlike other
methods, no assumption about the data distribution has to be made. Algorithms based on
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these techniques have been extensively applied in bioinformatics [21], energy management
[26, 34], and telecommunications [43].

In this paper a novel incremental clustering algorithm is proposed. The main feature of
the algorithm is its ability to discover globally optimal partitions instead of the local ones,
similarly to many algorithms and heuristics. The new proposal is based on the algorithm
described in [36] and inspired by the k-means algorithm with an adaptive Mahalanobis
distance [7, 37]. The choice of using the Mahalanobis distance in k-means is basically a
choice to either use full-covariance in the clusters or to ignore them. When the Euclidean
distance is used, the clusters are assumed to have the same covariances, i.e. to have
circular shapes. If data covariances cannot be represented by identity matrices, the use
of the Mahalanobis distance is advised because elliptical shapes are present. In contrast,
if two distributions have identity covariance matrices, the Mahalanobis distance reduces
to the Euclidean distance. Such is the case of the data analyzed in this paper.

A finite data set A ⊂ Rn, |A| = m, is given. A partition of the set A into 1 ≤ k ≤ m

disjoint subsets π1, . . . , πk, such that

k∪
j=1

πj = A, πr ∩ πs = ∅, r ̸= s, |πj| ≥ 1, j = 1, . . . , k, (1)

will be denoted by Π(A) = {π1, . . . , πk} and the set of all such partitions by P(A, k). The
elements π1, . . . , πk of the partition Π are called clusters in Rn. In this paper, first an
efficient adaptive Mahalanobis k-means algorithm is constructed, which is then used to
construct a new efficient algorithm for searching for a globally optimal partition obtained
by using the adaptive Mahalanobis distance-like function. An important advantage of
the proposed algorithm is that it successively gives optimal partitions with k = 2, 3, . . .

clusters. Therefore, for each k ≥ 2, it is immediately possible to calculate the value
of various validity indexes and in this way to estimate the most appropriate number of
clusters in a partition. Additionally, a novel validity index is proposed. This index,
combined with some others, will be used to determine the most appropriate number of
clusters in a partition.

We apply the algorithm to construct seismogenic zonings for Croatia and the Iberian
Peninsula, and by this new method, compact and comprehensive zones have been found.
The zones also exhibit a good correlation with the underlying geology.

The remainder of the paper is structured as follows. Section 2 reviews relevant works
in this area of knowledge. Section 3 discusses the search for a globally optimal partition
and introduces the new algorithm. Its application to create seismogenic zones is described
in Section 4. Finally, the conclusions drawn are summarized in Section 5.

2 Related works concerning seismogenic zoning
The seismicity of Croatia is characterized by earthquakes of medium-large magnitude
spread all over the country. The first consistent seismogenic zoning can be found in [25],
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which proposed seventeen zones. However, nowadays most of the works reported in the
literature propose less zones. Such is the case of [24], where the authors defined two
main zones. The 2010 report by Akkar et al. [1] defined five regional structural units:
Adriatic microplate, Adriatic, Dinaric, Supradinaric and Pannonian basin, refining the
two aforementioned zones.

The seismicity of the north-west Croatia was analyzed in detail for the first time in
[16]. The authors optimized and declustered the catalogue to accurately define eight
zones. The same authors improved their approach in 2008 [40] but, this time, the number
of proposed zones was five.

Similarly to mainland Croatia, the Iberian Peninsula exhibits a moderate seismicity
focused in several zones. One of the most widely used zonings so far was described by
Martín [27]. The author defined 27 seismogenic zones. Mezcua et al. [28] have recently
proposed a probabilistic seismic hazard analysis for mainland Spain combining some of
the zones previously proposed.

Partial zonings of the Iberian Peninsula have also been described. Such is the case
of [11], which studied the Granada Basin (south-east of Spain). López-Casado et al. [22]
defined four zones for the Betic Cordillera, Rif and nearby regions. The works in [3]
and [13] zoned the eastern and southern Spain, respectively. López-Fernández et al. [23]
worked on the area between the Pyrenees and the Galicia region.

Note that all reviewed works built the zonings using different geological assumptions
and some human-made decisions. For this reason, an objective and robust new method-
ology that aims to discover seismogenic zones is proposed in this paper.

3 Searching for a globally optimal partition
A data set A ⊂ [α, β] ⊂ Rn, where α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Rn is given, and
to each data point ai ∈ A a weight wi > 0 is associated.

If components ai
s, s = 1, . . . , n of the data point ai are not of equal range, i.e. if numbers

β1 − α1, . . . , βn − αn, are mutually significantly different, they should first be normalized.
This can be achieved by transforming the set A into the set B = {T (ai) : ai ∈ A} ⊂ [0, 1]n
using the mapping T : [α, β] → [0, 1]n, where

T (x) = D(x − α), D = diag
(

1
β1−α1

, . . . , 1
βn−αn

)
. (2)

After clustering the set B, the obtained results will be transformed again into [α, β] by
the mapping T −1 : [0, 1]n → [α, β], T −1(x) = D−1x + α.

If d : Rn × Rn → R+, R+ = [0, +∞⟩ is some distance-like function (see, e.g., [19, 38]),
then to each cluster πj ∈ Π its center cj can be associated as follows:

cj = argmin
x∈[α,β]

∑
ai∈πj

wid(x, ai). (3)

After that, by introducing the objective function F : P(A; k) → R+ the quality of a
partition and the search for the globally optimal k-partition can be defined by solving the
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following optimization problem:

argmin
Π∈P(A;k)

F(Π), F(Π) =
k∑

j=1

∑
ai∈πj

wid(cj, ai). (4)

Conversely, for a given set of centers c1, . . . , ck ∈ Rn, by applying the minimal distance
principle, the partition Π = {π1, . . . , πk} of the set A can be defined, which consists of
clusters:

πj = {a ∈ A : d(cj, a) ≤ d(cs, a), ∀s = 1, . . . , k}, j = 1, . . . , k.

Therefore, the problem of finding an optimal partition of the set A can be reduced to
the following global optimization problem for a Lipschitz continuous function (see, e.g.,
[33, 37, 38])

argmin
c1,...,ck∈[α,β]

F (c1, . . . , ck), F (c1, . . . , ck) =
m∑

i=1
wi min

1≤s≤k
d(cs, ai). (5)

The solutions of (4) and (5) coincide [36, 37].

3.1 Adaptive Mahalanobis k-means algorithm
The best known algorithm for searching for a locally optimal partition is the k-means
algorithm [35]. In this subsection an efficient adaptive Mahalanobis k-means algorithm
is constructed. This algorithm is able to recognize spherical clusters and very elongated
elliptical clusters which come from some line segments (see Example 1).

Algorithm 1. (Adaptive Mahalanobis k-means)

Step 0: Input m ≥ 1, 1 ≤ k ≤ m, I = {1, . . . , m}, J = {1, . . . , k}, A = {ai ∈ Rn : i ∈ I},
w1, . . . , wm > 0;
Define the vectors α, β ∈ Rn with components αl = min

i∈I
ai

l, βl = max
i∈I

ai
l, l = 1, . . . , n;

Choose mutually different assignment points z1 . . . , zk ∈ [α, β];

Step 1: (Assignment step) Define LS-clusters

πj = π(zj) = {ai ∈ A : ∥zj − ai∥ ≤ ∥zs, ai∥, ∀s ∈ J}, j ∈ J ;

Step 2: (Update step) Let c = (c1, . . . , ck) be the vector of centroids

cj = 1
Wj

∑
ai∈πj

wia
i, Wj =

∑
ai∈πj

wi, j ∈ J ;

Determine the objective function value F0 =
k∑

j=1

∑
ai∈πj

wi∥cj − ai∥2;

Determine the covariance matrices Sj = 1
Wj

∑
ai∈πj

wi(cj − ai)(cj − ai)T , j ∈ J ;

For each cluster πj define the Mahalanobis distance-like functions

d
(j)
M (x, y, Sj) := n

√
det Sj (x − y)T S−1

j (x − y), j ∈ J ; (6)
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Step 3: (Assignment step) For each j ∈ J define new clusters

π̂j = π̂(zj) = {ai ∈ A : d
(j)
M (cj , ai, Sj) ≤ d

(s)
M (cs, ai, Ss), ∀s ∈ J}, j ∈ J ;

Step 4: (Update step) Let ĉ = (ĉ1, . . . , ĉk) be the vector of centroids

ĉj = 1
Ŵj

∑
ai∈π̂j

wia
i, Ŵj =

∑
ai∈π̂j

wi, j ∈ J ; (7)

Determine the objective function value F1 =
k∑

j=1

∑
ai∈π̂j

wid
(j)
M (ĉj , ai, Sj);

Determine the covariance matrices Ŝj = 1
Ŵj

∑
ai∈π̂j

wi(ĉj − ai)(ĉj − ai)T , j ∈ J ;

For each cluster π̂j define the Mahalanobis distance-like functions

d
(j)
M (x, y, Ŝj) := n

√
det Ŝj (x − y)T Ŝ−1

j (x − y), j ∈ J ; (8)

Step 5: If F1 < F0, set F0 = F1, c = ĉ and Sj = Ŝj for each j ∈ J and go to Step 3 ;
Else set c⋆

j = ĉj , ∀j ∈ J and STOP.

Remark 1. If rank {ĉj − ai : ai ∈ π̂j} = n, then the matrices Ŝj from Step 4 are positive
definite and therefore there exist Ŝ−1

j and det Ŝj > 0.
Furthermore, the centers ĉj of clusters π̂j from Step 3 are defined by

ĉj = argmin
x∈[α,β]

∑
ai∈π̂j

wid
(j)
M (x, ai, Sj).

Since the unique stationary point of the function x 7→ ∑
ai∈π̂j

wid
(j)
M (x, ai, Sj) is determined

by ∑
ai∈π̂j

wiS
−1
j (x − ai) = 0,

it follows that the centers ĉj coincide with centroids given by (7) in Step 4.
Finally, the sequence of objective function values F0, F1, . . . obtained in Step 2 and

Step 4 is monotonically decreasing and attains its minimal value F ⋆ in finitely many
steps. Since ∑

ai∈π̂j

wi(ĉj − ai)T Ŝ−1
j (ĉj − ai) = n · Ŵj, the coefficient n

√
det Sj, resp. n

√
det Ŝj,

in distance-like functions (6), resp. (8), is essential for the monotonicity property of the
sequence of objective function values [37].

Example 1. A synthetic data set is constructed similarly to [39]. Let us choose two
points C1 = (3, 2), C2 = (8, 6) ∈ R2, and in the neighborhood of each point Cj generate
100 random points by using binormal random additive errors with mean vector 0 ∈ R2

and corresponding covariance matrices Σ1 = 1
2

[
2 −1

−1 .9

]
, Σ2 = 1

3

[
2 1
1 1

]
. Let us also

choose three line segments l1 = [(1, 9), (6, 9)], l2 = [(3, 5), (5, 9)], l3 = [(3, 6), (7, 2)] and in
a neighborhood of each generate 100 normally distributed random points. In this way, one
obtains the partition Π0 and the data set A = {ai ∈ R2 : i = 1, . . . , m} ⊂ [0, 10]2, with
m = 500 random points (see Fig. 1a).
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(c) k-means algorithm

Figure 1: Applications of Algorithm 1 to the data from Example 1

By applying Adaptive Mahalanobis k-means Algorithm 1 with initial centers (2, 2),
(9, 5), (3, 9), (4, 7), (5, 4), the optimal partition Π⋆ is obtained (Fig. 1b). Ellipses in the
figure include 95% of points belonging to the corresponding clusters.

The Rand and the Jacard index (see Table 1), as well as the confusion matrix S(Π0, Π⋆),
show recognition of the original partition very well.

Algorithm Rand Jacard

Algorithm 1 0.868 0.809
k-means algorithm 0.713 0.628

Table 1: Rand and Jacard indexes between the original partition Π0 and the partition Π⋆ obtained
by Adaptive Mahalanobis k-means Algorithm 1, and the partition Π̂ obtained by k-means algorithm

S(Π0, Π⋆) =


100 0 0 0 0
0 100 0 0 0
0 0 97 3 0
0 0 12 87 1
0 0 0 13 87

 , S(Π0, Π̂) =


100 0 0 0 0
0 96 0 0 4
0 0 100 0 0
0 0 45 55 0
0 0 0 36 67

 .

Fig. 1c depicts the partition Π̂ obtained by the application of k-means algorithm. Cir-
cles in the figure include 95% of points belonging to the corresponding clusters. Rand and
Jacard indexes are significantly smaller and the confusion matrix S(Π0, Π̂) shows weaker
recognition of the initial partition.

Remark 2. It can be shown that the Mahalanobis k-means algorithm essentially coincides
with the known Generalized Mixture Decomposition Algorithmic Scheme (GMDAS) [39]
as a special case of the Expectation Maximization algorithm (see [44, page 31]). The
efficiency of Algorithm 1, measured by the necessary CPU time, is significantly greater.
Let us justify this claim by the following numerical test. We apply both algorithms to
the data from Example 1 with m1 = 100, 200, and 500 data points in the neighborhood
of each point Cj (note that the number of data set A is m = 300, 600, and 1 500). As can
be seen from Table 2, the CPU time for Algorithm 1 is about 20 times shorter than the
CPU time for GMDAS.
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m GMDAS Algorithm 1

300 8.50 0.32
600 22.22 0.72

1 500 48.72 2.85

Table 2: CPU times (sec) for Algorithm 1 and for GMDAS

3.2 A new incremental algorithm
The following incremental algorithm proposed in this paper is based on the incremental
algorithm proposed in [36] (see also [2, 20]). An application of some efficient global
optimization method for a Lipschitz continuous function is very important for a successful
implementation of the proposed algorithm. Among many recent works related to the
global optimization problem for Lipschitz continuous functions, let us mention only [31,
33]. In this paper we propose to use the well-known global optimization algorithm DIRECT
(DIviding RECTangles) (see, e.g., [8, 9, 15, 17]).

An important advantage of all incremental algorithms for searching for an optimal
partition lies in the fact that one obtains an optimal partition for each k ≤ kmax, where
kmax is given in advance. Alternatively, given ϵ > 0, the algorithm can yield optimal
partitions with k = 2, 3, . . . clusters until the relative difference of the objective function
becomes less than ϵ [36]. This allows the estimation of the appropriate number of clusters
in a partition by using various well-known indexes (see [10, 42]).

Algorithm 2. (A new algorithm for searching for an optimal k-partition)

Step 0: Input m ≥ 1, I = {1, . . . , m}, A = {ai ∈ Rn : i ∈ I}, w1, . . . , wm > 0; ϵ > 0
Define the vectors α, β ∈ Rn with components αs = min

i∈I
ai

s, βs = max
i∈I

ai
s;

Step 1: Choose integer kmax and r < kmax different assignment points c
(0)
1 , . . . , c(0)

r ∈ [α, β];

Step 2: Determine ĉ1, . . . , ĉr ∈ [α, β] by using Algorithm 1 and calculate F̂r := F (ĉ1, . . . , ĉr);
Set F ⋆

r := F̂r;

Step 3: By using the DIRECT algorithm for global optimization determine ĉr+1 ∈ argmin
c∈[α,β]

Φ(c),

where Φ(c) =
m∑

i=1
wi min{δi

r, ∥c − ai∥2}, and δi
r = min

1≤s≤r
∥ĉs − ai∥2;

Step 4: By using Algorithm 1 with initial centers ĉ1, . . . , ĉr, ĉr+1 determine the new centers
c⋆

1, . . . , c⋆
r, c⋆

r+1 and calculate F ⋆
r+1 := F (c⋆

1, . . . , c⋆
r, c⋆

r+1);

Step 5: If F ⋆
r −F ⋆

r+1
F̂r

≥ ϵ, set F ⋆
r = F ⋆

r+1, r = r + 1 and go to Step 3; Else STOP.
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The sequence of objective function values (F ⋆
r ) is monotonically decreasing, bounded

below and therefore convergent. Unfortunately, it cannot be asserted that the proposed
algorithm gives a globally optimal k-partition, but numerous calculations show that the
partition obtained by this algorithm is a satisfactory approximation of the globally optimal
partition. Thereby it is important to note that the CPU time for the implementation of
Algorithm 2 is very short. In what follows, the partition obtained by Algorithm 2 will be
simply called an optimal partition.

3.3 Determining the most appropriate number of clusters
Automatic determination of the number of clusters has been one of the most difficult
problems in data clustering processes [10, 42]. In simple cases, the number of clusters in a
partition is determined by the nature of the problem itself. If the number of clusters in a
partition is not given in advance, then it is natural to search for an optimal partition which
consists of clusters that are as compact and relatively strongly separated as possible. For
determining the most appropriate number of clusters in a partition some of well-known
indexes (see [10, 42]) will be adopted for adaptive Mahalanobis clustering and a new index
will also be proposed.

Let Π⋆ = {π⋆
1, . . . , π⋆

k} be an optimal partition of the set A with weights w1, . . . , wm and
k clusters π⋆

1, . . . , π⋆
k with corresponding centers c⋆

1, . . . , c⋆
k ∈ Rn and covariance matrices

S⋆
1 , . . . , S⋆

k .

(i) The Simplified Silhouette Width Criterion (SWC) will be adopted in the fol-
lowing way. For each ai ∈ A ∩ π⋆

r the numbers

αir = d
(r)
M (c⋆

r, ai, S⋆
r ), βir = min

s ̸=r
d

(s)
M (c⋆

s, ai, S⋆
s ), si = βir − αir

max{αir, βir}
,

are calculated and the SWC is defined as the average of si:

SWC(k) = 1
W

∑
ai∈A

wisi, W =
m∑

i=1
wi.

More compact and better separated clusters in an optimal partition will result in a
greater SWC number.

(ii) The Davies – Bouldin index (VDB) will be adopted in the following way.

VDB(k) = 1
k

k∑
j=1

max
s ̸=j

V (π⋆
j ) + V (π⋆

s)
d

(j)
M (c⋆

j , c⋆
s, S⋆

j )
, V (π⋆

j ) = 1
W ⋆

j

∑
as∈π⋆

j

wsd
(j)
M (c⋆

j , as, S⋆
j ), (9)

where W ⋆
j = ∑

ai∈π⋆
j

wi. More compact and better separated clusters in an optimal

partition will result in a lower VDB index.
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(iii) The Calinski – Harabasz index (VCH) will be adopted in the following way.

VCH(k) = G(c⋆
1, . . . , c⋆

k)/(k − 1)
F(c⋆

1, . . . , c⋆
k)/(m − k)

, (10)

where

F(c⋆
1, . . . , c⋆

k) = n
k∑

j=1
W ⋆

j
n

√
det S⋆

j , G(c⋆
1, . . . , c⋆

k) =
k∑

j=1
W ⋆

j d
(j)
M (c⋆, c⋆

j , S⋆
j ),

where c⋆
j = 1

W ⋆
j

∑
ai∈πj

wia
i are centroids of clusters πj, and c⋆ = 1

W

∑
ai∈A

wia
i is a centroid

of the entire set A. More compact and better separated clusters in an optimal partition
will result in a greater VCH index.

(iv) Similarly to the Hypervolume fuzzy index [12], a new Area index will be defined as
the sum of weighted areas of the clusters.

Area(k) =
k∑

j=1

det S⋆
j

W ⋆
j

(11)

More compact and better separated clusters in an optimal partition will result in a
lower Area index.

Example 2. First, Algorithm 2 will be illustrated on the data from Example 1. Choose
the initial centers (2, 9) and (8, 6). Fig. 2 shows the first three of the seven iterations
of Algorithm 2. As can be seen in Fig. 3, all indexes very clearly point to the partition
with five clusters as the most appropriate partition. Also, the partition with five clusters
obtained by using Algorithm 2 coincides with the optimal partition Π⋆ from Example 1.
Moreover, Rand and Jacard indexes and the confusion matrix coincide with the ones from
Example 1. All of this allows us to conclude that Algorithm 2 has found the optimal
partition.
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Figure 2: Applications of Algorithm 2 to the data from Example 1
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Figure 3: Indexes of optimal partitions for the data from Example 2

Example 3. The Iris data set2 consists of 50 data (π0
1) related to Iris species Setosa,

50 data (π0
2) to Iris species Versicolour, and 50 data (π0

3) to Iris species Virginica. Each
data point is characterized by four attributes: sepal length in cm, sepal width in cm, petal
length in cm, and petal width in cm. In this way the original partition Π0 = {π0

1, π0
2, π0

3}
and the data set A = π0

1 ∪ π0
2 ∪ π0

3 with weights wi = 1, i = 1, . . . , 150 is constructed.
The implementation of Algorithm 2 with the initial center (4, 4, 2, 0) is shown in Ta-

ble 3. The number of elements in the corresponding clusters and the objective function
value are shown for the first four iterations of Algorithm 2.

Iteration |πj | F

1 {150} 331.4
2 {50, 100} 60.6
3 {50, 57, 43} 42.2
4 {50, 48, 40, 12} 34.2

Table 3: Implementation of Algorithm 2 on the Iris data set

The most appropriate number of clusters will be determined by indexes mentioned
previously (see Fig. 4). Note that only the Area Index is correctly pointing to the partition

with three clusters as the most appropriate partition. Confusion matrix
[

50 0 0
0 50 0
0 7 43

]
,

Rand Index (0.868) and Jacard Index (0.838) also show very well the coincidence of the
obtained optimal partition with three clusters and the original partition. All of this leads to
the conclusion that Algorithm 2 has found a globally optimal partition with three clusters
which mostly coincides with the original partition Π0.

Other indexes pointed to the partition with two clusters.
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Figure 4: Indexes of optimal partitions for the data from Example 3

2UCI Machine Learning Repository, available at http://archive.ics.uci.edu/ml/datasets/Iris
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4 Application to seismic zoning
Probabilistic Seismic Hazard Analysis (hereinafter referred to as: PSHA) estimates the
probabilities of exceeding various ground motion levels at a site, given all possible earth-
quakes, [5]. The first approach was done by [29]. However, the numerical models initiated
by [6] are currently preferred. Before a PSHA can be conducted, in areas of moderate seis-
mic activity, seismogenic zonings have to be created. In this section, zonings for Croatia
and the Iberian Peninsula are proposed according to Algorithm 1’s output.

4.1 Application to construct the seismic zoning map of Croatia
Algorithm 1 will be applied for earthquake zoning in a wider area of the Republic of Croa-
tia. The information associated with earthquakes around the world since 1971 is pub-
lic and available at: http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.
Based on these data, the data set

A = {ai = (λi, φi) ∈ R2 : 13 ≤ λi ≤ 20, 42 ≤ φi ≤ 47, wi = Mi ≥ 3}, (12)

is determined, consisting of 3184 locations in this area that have been affected by earth-
quakes of magnitude larger than or equal to 3.0 since 1973. Locations of these earthquakes
are depicted in Fig. 5, large magnitude earthquakes are marked by bigger black dots. The
abscissae of the points represent the longitudes and the ordinates represent the latitudes.

14 15 16 17 18 19 20

43

44

45

46

47

Figure 5: Locations in a wider area of the Republic of Croatia affected by the earthquakes of
magnitude larger than or equal to 3.0 since 1973

Since latitudes and longitudes of these data are not of equal range, first they should
be normalized according to the transformation (2). After clustering the normalized data,
inverse transformation is applied to the obtained results.

In each iteration of Algorithm 1, the corresponding SWC, VDB, VCH and Area indexes
are calculated. Fig. 7 shows graphs of these indexes. On the basis of these graphs, one
can conclude that the partition with 7 clusters is the most appropriate one, but it makes
sense to consider also the partitions with 11 or 13 clusters (see Fig. 6).
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Figure 6: Optimal partitions with the most appropriate number of clusters
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Figure 7: Indexes of optimal partitions for Croatian earthquake data

The following paragraphs provide a geophysical interpretation of the results obtained
by the proposed algorithm. Croatia comprises several geotectonic units. The most im-
portant are the Pannonian Basin, the eastern Alps, the Dinarides, the transition zone
between the Dinarides and the Adriatic Platform, and the Adriatic Platform itself [25].
The seismicity is not uniformly distributed. The most active zone is the coastal part, i.e.
the Dinarides, due to the activity generated by the contact between the Adriatic Platform
and the Dinarides [32]. North-west Croatia is the most seismically vulnerable zone due
to the concentration of population and its economical importance [16].

In this paper only the partition with seven zones will be considered. Henceforth, the
zones have been labelled as Z

(7)
j , j = 1, . . . , 7 and described in Table 4.

Zone Description

Z
(7)
1 Slovenia and northwestern Italy

Z
(7)
2 Northern Croatia

Z
(7)
3 Eastern Italy

Z
(7)
4 Adriatic and Dalmatia

Z
(7)
5 Dinara and Bosnia and Herzegovina

Z
(7)
6 Ston–Metković, southern Adriatic and southern Bosnia and Herzegovina

Z
(7)
7 Dubrovnik and Montenegro

Table 4: Earthquake zoning of Croatia (seven clusters)

Z
(7)
1 corresponds to Slovenia and northwestern Italy. It is a zone of high seismic

activity. Strong historical earthquakes are known to have happened therein. Z
(7)
2 is a
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broad zone that matches with the north of Croatia. The seismicity activity is moderate
and large earthquakes are unlikely. This vast zone comprises the northern part of the
Rijeka–Mt. Velebit fault and the Trieste–Dugi Otok Island fault. It also contains the
Fella–Sava–Črnomelj–Bihać fault, the southern marginal fault of the Pannonian basin,
the Periadriatic–Drava fault and the Mt. Medvednica fault zone. Z

(7)
3 , eastern Italy,

shows a distributed seismic activity. Z
(7)
4 is a zone of moderate seismic activity. In the

Adriatic and Dalmatia zone, earthquakes of magnitude greater than 5 are rare. This zone
contains the southern part of the Rijeka–Mt. Velebit fault and the Sinj–Imotski fault. Z

(7)
5

corresponds to Dinara and Bosnia and Herzegovina. Earthquakes are frequent although
of moderate magnitude. It comprises the Banka Luka fault and the Sinj–Imotski fault.
Z

(7)
6 runs from west to east from southern Adriatic to Bosnia and Herzegovina, centered at

Ston–Metković. This zone encloses the central part of the Mt. Mosor–Mt. Biokovo fault
and the northern part of the Dubovnik fault. Moderate-large magnitude events happen
after long periods of time. Z

(7)
7 , Dubrovnik and Montenegro, is a zone characterized

by high seismicity with earthquakes of magnitude up to 6.8. The southern part of the
Mt. Mosor–Mt. Biokovo fault, the Dubovnik fault and the Adriatic fault can be found
therein.

Finally, the zones have been smoothed according to geology. For that purpose, a new
Fig. 8 that includes the faults from Croatia [25] has been depicted.

(a) k = 7 (b) k = 11 (c) k = 13

Figure 8: Smoothed zones for Croatia

4.2 Application to construct the seismic zoning map of the Iberian
Peninsula

Algorithm 1 will be applied for earthquake zoning in a wider area of the Iberian Peninsula.
Based on the data from the catalogue of the National Geographic Institute of Spain (NGIS:
www.ign.es), the data set

A = {ai = (λi, φi) ∈ R2 : − 12 ≤ λi ≤ 6, 33 ≤ φi ≤ 45, wi = Mi ≥ 3}, (13)

is determined, consisting of 9327 locations in this area that have been affected by earth-
quakes of magnitude larger than or equal to 3.0 since 1978. Locations of these earthquakes
are denoted in Fig. 9. As in Fig. 5, the abscissae of the points represent the longitudes
and the ordinates represent the latitudes.
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Figure 9: Locations in a wider area of the Iberian Peninsula affected by the earthquakes of
magnitude larger than or equal to 3.0 since 1978

Since latitudes and longitudes of these data are not of equal range, first they should
be normalized according to the transformation (2). After clustering the normalized data,
inverse transformation is applied to the results obtained.
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Figure 10: Indexes of optimal partitions for Iberian Peninsula earthquake data

In each iteration of Algorithm 1, the corresponding SWC, VDB, VCH and Area indexes are
calculated. Fig. 10 shows graphs of these indexes. All indexes point to the partition with
four clusters as the partition with the most appropriate number of clusters (see Fig. 11a).
The area index and the VCH index allow us to conclude that in case of Spanish data the
most appropriate number of clusters could be 16, too (see Fig. 11b).
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Figure 11: Optimal partitions with the most appropriate number of clusters

The following paragraphs provide a geophysical interpretation of the results obtained
by the proposed algorithm. The convergence directed NW-SE between the African and the
Eurasian plate causes a deformation of the crust of the Iberian Peninsula, the Maghreb,
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and the adjacent coastal areas of the Mediterranean and the Atlantic [18]. The plate limit
is heterogeneous. Continental and oceanic areas are in contact and progressive changes
in the stress direction happen. The area corresponding to the Iberian Peninsula and
northwest Africa can be considered the most complicated contact area with a moderate
seismicity in relation to the magnitude of earthquakes. This area is surrounded on both
sides by a frequent seismic activity with very large earthquakes [14, 41]. The seismic
activity extends to interplate areas placed far away, such as the northeast of the Iberian
Peninsula.

The seismicity of the Iberian Peninsula is characterized by the occurrence of moderate-
magnitude earthquakes with a magnitude generally less than 5 [30]. Large earthquakes
are separated by long periods of time [4]. Many of the earthquakes are located in the
east of the Gibraltar Arch and spread over a diffuse area of approximately 500 km wide,
centered in the Alboran Sea, containing parts of the southeast of Spain, the north of
Morocco and Algeria.

In this paper only the partition with four zones Z
(4)
j , j = 1, . . . , 4, will be considered.

The zones are described in Table 5.

Zone Description

Z
(4)
1 Galicia, the Cantabrian mountain mass and the Pyrenees

Z
(4)
2 The Azores-Gibraltar fault and the south-west of the Iberian Peninsula

Z
(4)
3 The Betic system, the Alboran Sea, the north of Morocco and the Gibraltar field

Z
(4)
4 The Tell

Table 5: Earthquake zoning of the Iberian Peninsula (four clusters)

Z
(4)
1 corresponds to North Spain and includes Galicia, the Cantabrian mountain mass

and the Pyrenees. It is a zone of moderate seismic activity. Z
(4)
2 matches the Azores–

Gibraltar fault and the south-west of the Iberian Peninsula. The Azores–Gibraltar fault
is characterized by a persistent seismic activity. Large earthquakes are known to have
happened within that fault. The south-west of the Iberian Peninsula is mainly affected
by the influence of earthquakes of the Azores–Gibraltar fault. Z

(4)
3 corresponds to the

Betic system, the Alboran Sea, the north of Morocco and the Gibraltar field. It is a zone
centered in the Alboran Sea. The seismic activity is usual near the Alboran Sea and it
decreases for the outlying ones. Z

(4)
4 is the Tell. The zone presents a high seismic activity

and large earthquakes are frequent.
Also the zones for the Iberian Peninsula have been smoothed according to geology.

Fig. 12 shows the zones and the active faults for the Iberian Peninsula. These faults have
been obtained from the Geological and Mining Institute of Spain (IGME: www.igme.es).
These are the active faults from the Quaternary and are able to generate seismic activity.
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(a) k = 4 (b) k = 16

Figure 12: Smoothed zones for the Iberian Peninsula

5 Conclusions
In the paper an efficient adaptive Mahalanobis k-means algorithm is constructed and a
new efficient algorithm for searching for a globally optimal partition obtained by using
the adaptive Mahalanobis distance-like function is proposed. Even if one cannot assert
that a globally optimal partition is reached, numerous calculations show that the solution
obtained by this algorithm is a satisfactory approximation of the globally optimal solution.
Therefore, it is acceptable for applied research.

An important advantage of the proposed algorithm is that it successively gives optimal
partitions with k = 2, 3, . . . clusters. Therefore, for each k ≥ 2, it is immediately possible
to calculate the value of various validity indexes and in this way to estimate the most
appropriate number of clusters in a partition. It should also be highlighted that a novel
Area index to measure the quality of the created partitions has been proposed and used
in combination with other well-known indexes.

For regions of moderate seismic activity it is necessary to depict seismogenic zones
before conducting a PSHA. Two regions of moderate seismic activity, Croatia and the
Iberian Peninsula, have been analyzed. The task of depicting seismogenic zones involves
a high degree of subjectivity as it depends on the author’s knowledge and criteria. One of
the main advantages of the algorithm lies in its ability to depict zones without considering
a human decision. Moreover, it also estimates the best number of clusters. Another
advantage is that the algorithm is able to plot not only circular but also elliptical zones.
Three maps have been proposed for Croatia and two for the Iberian Peninsula. Finally,
it must be noted that a satisfactory correlation with findings obtained using tools from
geological sciences is obtained.
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